# Chapter 20:Carboxylic Acids and Nitriles



# The Importance of Carboxylic Acids (RCO<sub>2</sub>H)

- Starting materials for *acyl derivatives* (esters, amides, and acid chlorides)
- Abundant in nature from oxidation of aldehydes and alcohols in metabolism
  - Acetic acid, CH<sub>3</sub>CO<sub>2</sub>H, vinegar
  - Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H (rancid butter)
  - Long-chain aliphatic acids from the breakdown of fats

# Naming Carboxylic Acids and Nitriles

- Carboxylic Acids, RCO<sub>2</sub>H
- If derived from open-chain alkanes, replace the terminal -e of the alkane name with -oic acid
- The carboxyl carbon atom is always the first carbon



Propionic Acid

4-methyl-pentanoic acid

3-ethyl-6-methyl-octanoic acid

## **Alternative Names**

- Compounds with —CO<sub>2</sub>H bonded to a ring are named using the suffix -carboxylic acid
- The CO<sub>2</sub>H carbon is not itself numbered in this system



3-bromo-cyclohexane carboxylic acid

1-cyclopentene carboxylic acid

## **Common Acids**

- Formic acid (HCOOH)
- Acetic acid (CH<sub>3</sub>COOH)



## Nitriles, RC≡N

- Closely related to carboxylic acids named by adding -*nitrile* as a suffix to the alkane name, with the nitrile carbon numbered C1
- Complex nitriles are named as derivatives of carboxylic acids.
  - Replace -ic acid or -oic acid ending with onitrile





Acetonitrile

Benzonitrile



2-Bromo-cyclohexanecarbonitrile

# Structure and Physical Properties of Carboxylic Acids

- Carboxyl carbon *sp*<sup>2</sup> hybridized: carboxylic acid groups are planar with C–C=O and O=C–O bond angles of approximately 120°
- Carboxylic acids form hydrogen bonds, existing as cyclic dimers held together by two hydrogen bonds
- Strong hydrogen bonding causes much higher boiling points than the corresponding alcohols

## **Dissociation of Carboxylic Acids**

- Carboxylic acids are proton donors toward weak and strong bases, producing metal carboxylate salts, RCO<sub>2</sub><sup>-</sup> +M
- Carboxylic acids with more than six carbons are only slightly soluble in water, but their conjugate base salts are water-soluble



## Acidity Compared to Alcohols

- Carboxylic acids are better proton donors than are alcohols (The p $K_a$  of ethanol is ~16, compared to ~5 for acetic acid)
- In an alkoxide ion, the negative charge is localized on oxygen while in a carboxylate ion the negative charge is delocalized over two equivalent oxygen atoms, giving resonance stabilization



## Substituent Effects on Acidity

## Electronegative substituents promote formation of the carboxylate ion

| TABLE 20.4 Acidity of Some Carboxylic Acids |                    |              |               |  |  |  |
|---------------------------------------------|--------------------|--------------|---------------|--|--|--|
| Structure                                   | Ka                 | р <i>К</i> а |               |  |  |  |
| $F_3CCO_2H$                                 | 0.59               | 0.23         | Otomore and J |  |  |  |
| $\rm FCH_2CO_2H$                            | $2.6	imes10^{-3}$  | 2.59         | Stronger acid |  |  |  |
| ClCH <sub>2</sub> CO <sub>2</sub> H         | $1.4	imes10^{-3}$  | 2.85         |               |  |  |  |
| $BrCH_2CO_2H$                               | $2.1	imes10^{-3}$  | 2.68         |               |  |  |  |
| $\rm ICH_2CO_2H$                            | $7.5	imes10^{-4}$  | 3.12         |               |  |  |  |
| $HCO_2H$                                    | $1.77	imes10^{-4}$ | 3.75         |               |  |  |  |
| $\mathrm{HOCH}_2\mathrm{CO}_2\mathbf{H}$    | $1.5	imes10^{-4}$  | 3.83         |               |  |  |  |
| $C_6H_5CO_2H$                               | $6.46	imes10^{-5}$ | 4.19         |               |  |  |  |
| $H_2C = CHCO_2H$                            | $5.6	imes10^{-5}$  | 4.25         |               |  |  |  |
| $CH_3CO_2H$                                 | $1.76	imes10^{-5}$ | 4.75         |               |  |  |  |
| $\rm CH_3 CH_2 CO_2 H$                      | $1.34	imes10^{-5}$ | 4.87         | Wookor acid   |  |  |  |
| $CH_{3}CH_{2}OH (ethanol)^{a}$              | $(10^{-16})$       | (16)         | weaker actu   |  |  |  |

<sup>a</sup>Value for ethanol is shown for reference.

## Substituent Effects

- An electron-withdrawing group will drive the ionization equilibrium toward dissociation, increasing acidity
- An electron-donating group destabilizes the carboxylate anion and decreases acidity



Electron-withdrawing group stabilizes carboxylate and strengthens acid



Electron-donating group destabilizes carboxylate and weakens acid

## Substituent Effects in Substituted Benzoic Acids

|                  |                   | $Y - CO_2H$        |              |                        |
|------------------|-------------------|--------------------|--------------|------------------------|
|                  | Y                 | Ka                 | p <i>K</i> a |                        |
| Weaker<br>acid   | —он               | $3.3	imes10^{-5}$  | 4.48         | Activating<br>groups   |
|                  | -OCH <sub>3</sub> | $3.5	imes10^{-5}$  | 4.46         |                        |
|                  | $-CH_3$           | $4.3	imes10^{-5}$  | 4.34         |                        |
|                  | $-\mathrm{H}$     | $6.46	imes10^{-5}$ | 4.19         |                        |
| Stronger<br>acid | —Cl               | $1.0	imes10^{-4}$  | 4.0          | Deactivating<br>groups |
|                  | -Br               | $1.1	imes10^{-4}$  | 3.96         |                        |
|                  | —СНО              | $1.8	imes10^{-4}$  | 3.75         |                        |
|                  | -CN               | $2.8	imes10^{-4}$  | 3.55         |                        |
|                  | $-NO_2$           | $3.9	imes10^{-4}$  | 3.41         |                        |

© 2004 Thomson/Brooks Cole

## Aromatic Substituent Effects

- An electron-withdrawing group (-NO<sub>2</sub>) increases acidity by stabilizing the carboxylate anion, and an electrondonating (activating) group (OCH<sub>3</sub>) decreases acidity by destabilizing the carboxylate anion
- We can use relative pKa's as a calibration for effects on relative free energies of reactions with the same substituents



#### **Preparation of Carboxylic Acids**

- Oxidation of a substituted alkylbenzene with KMnO<sub>4</sub> or Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> gives a substituted benzoic acid (see Section 16.10)
- 1° and 2° alkyl groups can be oxidized, but tertiary groups are not



#### **From Alkenes**

Oxidative cleavage of an alkene with KMnO<sub>4</sub> gives a carboxylic acid if the alkene has at least one vinylic hydrogen (see Section 7.8)



#### **From Alcohols**

Oxidation of a <u>primary alcohol or an aldehyde</u> with CrO<sub>3</sub> in aqueous acid



## Hydrolysis of Nitriles

- Hot acid or base yields carboxylic acids
- Conversion of an alkyl halide to a nitrile (with cyanide ion) followed by hydrolysis produces a carboxylic acid with one more carbon (RBr  $\rightarrow$  RC=N  $\rightarrow$  RCO<sub>2</sub>H)
- Best with primary halides because elimination reactions occur with secondary or tertiary alkyl halides



## **Carboxylation of Grignard Reagents**

- Grignard reagents react with dry CO<sub>2</sub> to yield a metal carboxylate
- Limited to alkyl halides that can form Grignard reagents (see 17.6)



#### Reactions of Carboxylic Acids: An Overview

- Carboxylic acids transfer a proton to a base to give anions, which are good nucleophiles in S<sub>N</sub>2 reactions
- Like ketones, carboxylic acids undergo <u>addition of nucleophiles</u> to the carbonyl group
  - In addition, carboxylic acids undergo other reactions characteristic of neither alcohols nor ketones



## **Reduction of Carboxylic Acids**

Reduced by LiAIH<sub>4</sub> to yield *primary alcohols* 

The reaction is difficult and often requires heating in tetrahydrofuran solvent to go to completion



#### **Reduction with Borane**

- Borane in tetrahydrofuran (BH<sub>3</sub>/THF) converts carboxylic acids to primary alcohols selectively
- Preferable to LiAIH<sub>4</sub> because of its relative ease, safety, and specificity
- Borane reacts faster with COOH than it does with NO<sub>2</sub>



## **Chemistry of Nitriles**

- Nitriles and carboxylic acids both have a carbon atom with three bonds to an electronegative atom, and both contain a π bond
- Both both are electrophiles

$$\mathbf{R} - \mathbf{C} \equiv \mathbf{N} \qquad \mathbf{R} - \mathbf{C} \qquad \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{H}$$

A nitrile—three bonds to nitrogen

© 2004 Thomson/Brooks Cole

An acid—three bonds to two oxygens

#### **Preparation of Nitriles by Dehydration**

Reaction of primary amides RCONH<sub>2</sub> with SOCl<sub>2</sub> or POCl<sub>3</sub> (or other dehydrating agents)

 Not limited by steric hindrance or side reactions (as is the reaction of alkyl halides with NaCN)



## **Reactions of Nitriles**

- RC≡N is strongly polarized and with an electrophilic carbon atom
- Attacked by nucleophiles to yield *sp*<sup>2</sup>-hybridized imine anions



# Hydrolysis: Conversion of Nitriles into Carboxylic Acids

Hydrolyzed in with acid or base catalysis to a carboxylic acid and ammonia or an amine



## Reduction: Conversion of Nitriles into Amines

 Reduction of a nitrile with LiAIH<sub>4</sub> gives a primary amine



## Reaction of Nitriles with Organometallic Reagents

Grignard reagents add to give an intermediate imine anion that is hydrolyzed by addition of water to yield a ketone

