Chapter 17: Alcohols and Phenols

Alcohols and Phenols

Alcohols contain an OH group connected to a a saturated C (sp³). They are important solvents and synthesis intermediates. Phenols contain an OH group connected to a carbon in a benzene ring. Methanol, CH₃OH, called methyl alcohol, is a common solvent, a fuel additive, produced in large quantities. Ethanol, CH₃CH₂OH, called ethyl alcohol, is a solvent, fuel, beverage. Phenol, C₆H₅OH ("phenyl alcohol") has diverse uses - it gives its name to the general class of compounds

Preparation of Alcohols: an Overview

- Alcohols are derived from many types of compounds
- The alcohol hydroxyl can be converted to many other functional groups
- This makes alcohols useful in synthesis

Naming Alcohols

General classifications of alcohols based on substitution on C to which OH is attached.

IUPAC Rules for Naming Alcohols

- Select the longest carbon chain containing the hydroxyl group.
- derive the parent name by replacing the -e ending of the corresponding alkane with -o/.
- Number the chain from the end nearer the hydroxyl group.
- Number substituents according to position on chain, listing the substituents in alphabetical order.

Many Alcohols Have Common Names

These are accepted by IUPAC

2-methyl-3-pentanol

3-phenyl-2-butanol

cis-1,4-cyclohexadiol

Naming Phenols

- Use "phene" (the French name for benzene) as the parent hydrocarbon name, not benzene.
- Name substituents on aromatic ring by their position from OH.

3-butylphenol

2-aminophenol

4-nitrophenol

Properties of Alcohols and Phenols: Hydrogen Bonding

- The structure around O of the alcohol or phenol is similar to that in water, sp³ hybridized
- Alcohols and phenols have much higher boiling points than similar alkanes and alkyl halides

Alcohols Form Hydrogen Bonds

- A positively polarized —OH hydrogen atom from one molecule is attracted to a lone pair of electrons on a negatively polarized oxygen atom of another molecule This produces a force that holds the two molecules together
- These intermolecular attractions are present in solution but not in the gas phase, thus elevating the boiling point of the solution

Properties of Alcohols and Phenols: Acidity and Basicity

- Weakly basic and weakly acidic
- Alcohols are weak Brønsted bases
- Protonated by strong acids to yield oxonium ions, ROH₂+

Alchols and Phenols are Weak Brønsted Acids

- Can transfer a proton to water to a very small extent
- Produces H₃O⁺ and an alkoxide ion, RO⁻, or a phenoxide ion, ArO⁻

pK_a Values for Typical OH Compounds

ABLE 17.1 Acidity Constants of Some Alcohols and Phenols		
Alcohol or phenol	p <i>K</i> _a	
$(CH_3)_3COH$	18.00	Weaker acid
$\rm CH_3 CH_2 OH$	16.00	
HOH (water)	(15.74)	
$CH_{3}OH$	15.54	
$\rm CF_3CH_2OH$	12.43	
p-Aminophenol	10.46	
p-Methoxyphenol	10.21	
p-Methylphenol	10.17	
Phenol	9.89	
p-Chlorophenol	9.38	
p-Bromophenol	9.35	
p-Nitrophenol	7.15	
2,4,6-Trinitrophenol	0.60	Stronger acid

Relative Acidities of Alcohols

Simple alcohols are about as acidic as water. Alkyl groups make an alcohol a weaker acid. Steric effects are important.

Inductive Effects

Electron-withdrawing groups make an alcohol a stronger acid by stabilizing the conjugate base (alkoxide)

Generating Alkoxides from Alcohols

- Alcohols are weak acids requires a strong base to form an alkoxide such as NaH, sodium amide NaNH₂, and Grignard reagents (RMgX)
 - Alkoxides are bases used as reagents in organic chemistry

Phenol Acidity

Phenols (pK_a ~10) are much more acidic than alcohols (pK_a ~ 16) due to resonance stabilization of the phenoxide ion
 Phenols react with NaOH solutions (but alcohols do not), forming soluble salts that are soluble in dilute aqueous
 A phenolic component can be separated from an organic solution by extraction into basic aqueous solution and is isolated after acid is added to the solution

$$\sim 0 - H + NaOH \rightarrow \sim \sim 0^{-} Na^{+} + H_2O$$

Sodium phenoxide

Substituted Phenols

Can be more or less acidic than phenol itself

An electron-withdrawing substituent makes a phenol more acidic by delocalizing the negative charge

Phenols with an electron-donating substituent are less acidic because these substituents concentrate the charge

Electron-withdrawing groups (EWG) stabilize phenoxide anion, resulting in increased phenol acidity © 2004 Thomson/Brooks Cole

Electron-donating groups (EDG) destabilize phenoxide anion, resulting in decreased phenol acidity

Nitro-Phenols

Phenols with nitro groups at the ortho and para positions are much stronger acids

The pKa of 2,4,6-trinitrophenol is 0.6, a very strong acid

Review: Preparation of Alcohols by Regiospecific Hydration of Alkenes

Hydroboration/oxidation: syn, non-Markovnikov hydration Oxymercuration/reduction: Markovnikov hydration

Alcohols from Reduction of Carbonyl Compounds

- Reduction of a carbonyl compound in general gives an alcohol
- Note that organic reduction reactions add the equivalent of H₂ to a molecule

where [H] is a generalized reducing agent

A carbonyl compound

An alcohol

Reduction of Aldehydes and Ketones

- Aldehydes gives primary alcohols
- Ketones gives secondary alcohols

Reduction Reagent: Sodium Borohydride

NaBH₄ is not sensitive to moisture and it does not reduce other common functional groups
 Lithium aluminum hydride (LiAIH₄) is more powerful, less specific, and very reactive with water
 Both add the equivalent of "H-"

Reduction of Carboxylic Acids and Esters

- Carboxylic acids and esters are reduced to give primary alcohols
- LiAIH₄ is used because NaBH₄ is not effective
- **Carboxylic acid reduction**

$$CH_{3}(CH_{2})_{7}CH = CH(CH_{2})_{7}COH \xrightarrow{1. \text{ LiAlH}_{4}, \text{ ether}} CH_{3}(CH_{2})_{7}CH = CH(CH_{2})_{7}CH_{2}OH \xrightarrow{9-\text{Octadecenoic acid}} 9-\text{Octadecen-1-ol (87\%)}$$

$$Ester reduction$$

$$CH_{3}CH_{2}CH = CHCOCH_{3} \xrightarrow{1. \text{ LiAlH}_{4}, \text{ ether}} CH_{3}CH_{2}CH = CHCH_{2}OH + CH_{3}OH \xrightarrow{9-\text{Octadecen-1-ol (87\%)}} CH_{3}CH_{2}CH = CHCH_{2}OH + CH_{3}OH \xrightarrow{9-\text{Octadecen-1-ol (91\%)}} CH_{3}CH_{2}CH = CHCH_{2}OH + CH_{3}OH + CH_{3$$

Alcohols from Reaction of Carbonyl Compounds with Grignard Reagents

- Alkyl, aryl, and vinylic halides react with magnesium in ether or tetrahydrofuran to generate Grignard reagents, RMgX
 - Grignard reagents react with carbonyl compounds to yield alcohols

Examples of Reactions of Grignard Reagents with Carbonyl Compounds

Reactions of Esters and Grignard Reagents

- Yields tertiary alcohols in which two of the substituents carbon come from the Grignard reagent
- Grignard reagents do not add to carboxylic acids they undergo an acid-base reaction, generating the hydrocarbon of the Grignard reagent

Grignard Reagents and Other Functional Groups in the Same Molecule

Can't be prepared if there are reactive functional groups in the same molecule, including proton donors.

where
$$\mathbf{FG} = -\mathbf{OH}, -\mathbf{NH}, -\mathbf{SH}, -\mathbf{CO}_{2}\mathbf{H}$$

$$\mathbf{FG} = -\mathbf{CH}, -\mathbf{CR}, -\mathbf{CNR}_{2}, \\ -\mathbf{C} \equiv \mathbf{N}, -\mathbf{NO}_{2}, -\mathbf{SO}_{2}\mathbf{R}$$

The Grignard reagent is protonated by these groups.

The Grignard reagent adds to these groups.

Mechanism of the Addition of a Grignard Reagent

Grignard reagents act as nucleophilic carbon anions (carbanions, : R–) in adding to a carbonyl group. The intermediate alkoxide is then protonated to produce the

alcohol.

Some Reactions of Alcohols

- Two general classes of reaction
 - At the carbon of the C–O bond
 - At the proton of the O–H bond

Dehydration of Alcohols to Yield Alkenes

- The general reaction: forming an alkene from an alcohol through loss of O-H and H (hence dehydration) of the neighboring C–H to give π bond
- Specific reagents are needed

A dehydration reaction

 $C - C \rightarrow C = C + H_2 O$

© 2004 Thomson/Brooks Cole

Acid- Catalyzed Dehydration

Tertiary alcohols are readily dehydrated with acid Secondary alcohols require severe conditions (75% H_2SO_4 , 100°C) - sensitive molecules don't survive Primary alcohols require very harsh conditions – impractical Reactivity is the result of the nature of the carbocation intermediate

Dehydration with POCl₃

- Phosphorus oxychloride in the amine solvent pyridine can lead to dehydration of secondary and tertiary alcohols at low temperatures
- An E2 via an intermediate ester of POCl₂

Conversion of Alcohols into Alkyl Halides

3° alcohols are converted by HCI or HBr at low temperature

1° and alcohols are resistant to acid – use SOCl₂ or PBr₃ by an S_N2 mechanism

Conversion of Alcohols into Tosylates

Reaction with *p*-toluenesulfonyl chloride (tosyl chloride, *p*-TosCl) in pyridine yields alkyl tosylates, ROTos
 Formation of the tosylate does not involve the C–O bond so configuration at a chirality center is maintained
 Alkyl tosylates react like alkyl halides

Stereochemical Uses of Tosylates

The S_N^2 reaction of an alcohol via a tosylate, produces inversion at the chirality center

The S_N2 reaction of an alcohol via an alkyl halide proceeds with *two* inversions, giving product with same arrangement as starting alcohol

Oxidation of Alcohols

Can be accomplished by inorganic reagents, such as $KMnO_4$, CrO_3 , and $Na_2Cr_2O_7$ or by more selective, expensive reagents

Oxidation of Primary Alcohols

To aldehyde: pyridinium chlorochromate (PCC, C₅H₆NCrO₃Cl) in dichloromethane

Other reagents produce carboxylic acids

Oxidation of Secondary Alcohols

- Effective with inexpensive reagents such as Na₂Cr₂O₇ in acetic acid
- PCC is used for sensitive alcohols at lower temperatures

4-tert-Butylcyclohexanol

4-tert-Butylcyclohexanone (91%)

Testosterone (steroid; male sex hormone) © 2004 Thomson/Brooks Cole 4-Androstene-3,17-dione (82%)

Preparation and Uses of Phenols

Industrial process from readily available cumene. Forms cumene hydroperoxide with oxygen at high temperature. Converted into phenol and acetone by acid.

Laboratory Preparation of Phenols

- From aromatic sulfonic acids by melting with NaOH at high temperature.
- Limited to the preparation of alkyl-substituted phenols.

Reactions of Phenols

- The hydroxyl group is a strongly activating, making phenols substrates for electrophilic halogenation, nitration, sulfonation, and Friedel–Crafts reactions
- Reaction of a phenol with strong oxidizing agents yields a quinone
- Fremy's salt [(KSO₃)₂NO] works under mild conditions through a radical mechanism

Quinones in Nature

Ubiquinones mediate electron-transfer processes involved in energy production through their redox reactions

Summary - Alcohols

- Synthesis
 - Reduction of aldehydes and ketones
 - Addition of Grignard reagents to aldehydes and ketones
- Protection of OH as TMS) ether
- Reactions
 - Conversion to alkyl halides
 - Dehydration
 - Oxidation

Summary - Phenols

- Much more acidic ($pK_a \approx 10$) than alcohols
- Substitution of the aromatic ring by an electronwithdrawing group increases phenol acidity
- Substitution by an electron-donating group decreases acidity
- Oxidized to quinones
- Quinones are reduced to hydroquinones